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ABSTRACT 
 

One of the goals of the nonlinear structural analysis is to reduce the required time for 

obtaining the numerical solution. More important than this issue, the nonlinear scheme could 

converge to the answers for all types of problems. A perfect nonlinear solver must have both 

of these specifications. This article aims to reduce the duration of structural analysis as well 

as to boost convergent requirements. To reach these two objectives, the authors 

simultaneously minimize the kinetic and residual structural energies. The ability of the new 

formulation is shown by solving several structures, with nonlinear geometrical behavior.  

Based on the compressive studies, numerical solutions show the high efficiency of the new 

method. 
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1. INTRODUCTION 
 

The common dynamic relaxation algorithm (DR) cannot easily trace the structural static 

path. In this technique, the jumps occur at the limit points. To fix this defect, a variable load 

factor is formulated. In the structural static analysis, the following general equation should 

be solved:  
 

 (1) 
 

Here, the stiffness matrix is shown by S. Moreover, X and P, are the displacement and 

load vectors, respectively. In the nonlinear structural analysis, the stiffness matrix and the 
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internal forces are nonlinear functions of the nodal displacements. Hence, the iterative 

procedures are used to solve the system. So far, a lot of researchers have proposed various 

relationships for nonlinear structural analysis. One way of solving Eq. (1) is utilizing the 

dynamic relaxation (DR) scheme. In this process, artificial mass and damping are added to 

Eq. (1). As a result, the next equation is obtained: 

 

 

(2) 

 

Where, the fictitious damping and mass matrices are denoted by C and M, 

correspondingly. Moreover, Ẍ and Ẋ are the acceleration and velocity vectors, respectively. 

It should be noted that the DR approach is considered to be an explicit technique. Because 

the mass and damping matrices are assumed to be diagonal. The DR method has two types 

of viscous and kinetic formulations. Especially, the kinetic dynamic relaxation approach 

applies to form-finding cable and membrane structures [1]. Alamatian proposed a new 

relation for estimating fictitious mass [2]. Namadchi and Alamatian used the DR for 

dynamic analysis of structures [3]. Jung et al. calculated the time step based on continuous 

kinetic damping [4]. Rezaiee-Pajand and Mohammadi-Khatami obtained a formula for the 

fictitious time step for the viscous dynamic relaxation [5]. 

The efficiency of dynamic relaxation methods in static analysis of 3D cable structures 

was examined by Hüttner et al. [6]. In a comprehensive comparison study, the abilities of 51 

different dynamic relaxation procedures were found, and the obtained results were presented 

[7]. Another application of DR scheme is related to tracing the structural equilibrium path. 

By applying this method, a nonlinear buckling load and the limit points could be obtained. 

These goals can be accomplished by using a variable load factor. The kinetic DR method has 

been used for the form-finding of structures [8]. Form-finding and analysis of tension 

structures by dynamic relaxation were evaluated by Barnes [9]. Moncrieff and Topping 

introduced a new procedure for generating cutting patterns for membrane structures, 

employing a two-dimensional dynamic relaxation analysis for each cloth [10]. In another 

research, a parallel algorithm for the DR strategy was presented by Topping and Khan [11]. 

 In the following part,  the previous investigations on the tracing of the structural 

equilibrium path are reviewed in the last decade. Lee et al. proposed a formula for the post-

buckling path of structures, by combining the explicit arc length approach and the kinetic 

DR [12]. Rezaiee-Pajand and Alamatian obtained two formulas to trace the equilibrium path. 

They were based on minimizing the unbalanced energy and residual force [13]. Alamatian 

suggested two other relations by minimizing the kinetic energy and the unbalanced 

displacement [14]. Lee et al. used two implicit and explicit arc length processes to analyze 

the post-buckling of space frames [15]. Rezaiee-Pajand and Estiri also established four 

formulas to estimate the load factor for finding the structural static path [16, 17, 18, 19]. The 

nonlinear thermo-elastic bending analysis of a functionally graded carbon nanotube-

reinforced composite plate resting on two-parameter elastic foundations was investigated by 

Golmakani and Zeighami [20]. In another study, Golmakani and Kadkhodayan investigated 

the axisymmetric bending and stretching of circular and annular functionally graded plates 

with variable thickness under combined thermal-mechanical loading and various boundary 

conditions [21]. A new parallelization approach was programmed with the NVIDIA CUDA 
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API proposed by Iványi [22]. The adaptive dynamic relaxation approach is used to solve 

linear elastic and crack propagation problems [23].  

In this research, a new equation is proposed for the load factor by minimizing kinetic and 

residual energy, simultaneously. For this purpose, the sum of the kinetic and residual energy 

is assumed to be based on the DR artificial parameters. Then, this relation is minimized and 

a new formula is achieved for the load factor. As a result, the proposed load factor depends 

only on the fictitious parameters used in the DR process. To show the significance of the 

authors’ formulation, the ability of the suggested approach is evaluated by performing 

several numerical examples. Furthermore, the recommended formula is compared with other 

researchers' solutions, based on the number of iterations, and the number of converging 

points on the static path of the analysis time. The authors in this paper aim to find a formula 

that obtains the convergence points in the statical path in a shorter time. In other words, the 

time to reach each convergence point should be reduced. Furthermore, reducing the time of 

each iteration is another advantage of the proposed method. 

 

 

2. THE DYNAMIC RELAXATION PROCESS 
 

By using the central finite difference relations for Eq. (2), the fundamental relations of 

dynamic relaxation are obtained. Equations (3) and (4) show the velocity and displacement 

in the dynamic relaxation approach, respectively [1]. 
 

 

(3) 

 

(4) 

 

The artificial time step, i-th entry of the internal force, and the external force vectors in 

the repetition of the n-th, are shown by ,  and , correspondingly. The number of 

degrees of freedom is displayed with ndof. 

In the process of accomplishing the responses, both equations (3) and (4) are repeated 

until the residual force reaches an acceptable error. In DR method, the unbalanced force 

causes the artificial oscillation of the structure. The unbalanced force vector of R is obtained 

from the difference between internal and external forces, as follows: 
 

 (5) 

 

Parameters influencing the dynamic relaxation procedure are mass and damping matrices. 

Researchers have proposed a variety of methods for estimating these factors. Underwood 

used equality (6) for the mass matrix [24]. He considered the time step value to be equal to 

1.1. 

,...,ndof,i     ,)      (
t

t

t

t n
i

n
inn

ii
n
ii

nn

i
nn

ii
n
ii

nn
ii

n
ii

n

i 21
2

2

2

2 2

1

2

1

=−
+

+
+

−
=

−+

FP
CMCM

CM ..

XX

1

21 1 1 2
n

n n n
ii i i , ,...,ndoft       ,      
+

+ + == +
.

X X X

nt
n

iF
n

iP

FPR −=



M. Rezaiee-Pajand1 and H. Estiri 

 

60 

 (6) 

 

Zhang and Yu obtained a relationship for fictitious damping. They suggested this factor 

from Rayleigh's principle, in the following form [25]. 
 

 (7) 

 

(8) 

 

In another study and by minimizing the displacement error of two consecutive iterations, 

Rezaei-Pajand and Alamatian recommended equations (9) and (10) for artificial mass and 

damping, respectively [26]. These researchers estimated the minimum factious frequency 

from Eq. (7). 

 

 (9) 

 

(10) 

 

In the common dynamic relaxation formulation, the external load is constant in each load 

step. Because of this assumption, jumps usually occur near the snap-back and snap-through 

regions. Hence, the conventional dynamic relaxation procedures cannot always cross the 

limit points. Figure 1 shows jumping on the structural static path at the force limit point. If 

the usual dynamic relaxation is used, at point A, the response moves to point B with a slight 

increase in the load amount. To pass through the return parts in the dynamic relaxation 

algorithm, the variable external load must be applied. For this reason, Eq. (11) is used 

instead of Eq. (5) to calculate the residual force. The symbol λ is the load factor. By utilizing 

this parameter, the load level will be variable. 

  (11) 

 
Figure 1: The conventional DR technique at the limit points 
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Rezaei-Pajand and Alamatian minimized the unbalanced force and the residual energy. 

Accordingly, they obtained the two relations (12) and (13) for the load factor in each 

dynamic relaxation iteration, respectively [13]. 

 (12) 

 

(13) 

 

In addition, Alamatian suggested equations (14) and (15), based on minimizing the 

unbalanced displacement and the residual kinetic energy, respectively [14]. 
 

 

(14) 

 

(15) 

 

In another study, Rezaei-Pajand and Estiri obtained some relationships for the load 

coefficient [16, 17, 18, 19]. In one of them, they minimized external work with respect to the 

load factor. Eq. (16) shows the load factor in the mentioned method. This increment is added 

to the previous load coefficient to estimate the load factor in the new step [18]. 
 

 

(16) 

 

In another relation, they suggested a new way to find the load factor increment by setting 

the work increment of external forces. Eq. (17) shows their proposed factor [16]. 
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(17) 

 

 

3. PROPOSED METHOD 
 

In this study, a new formula is obtained for the load factor by minimizing the sum of the 

kinetic energy and the residual energy with respect to this coefficient. Based on the artificial 

factors of the dynamic relaxation technique, the kinetic energy and residual energy are 

estimated from Eqs. (18) and (19), respectively. 

 

(18) 

 (19) 

 

Then, the amount of residual force of Eq. (11) is inserted in the above equations. Next, 

these two functions are summed. After simplifying and defining the following factors, An 

and Bn, equation (21) is obtained. 

  (20) 

 

(21)  

 

Now, the load factor λ must be calculated in such a way that Eq. (23) is minimized. The 

necessary condition for minimizing this function is that the first derivative with respect to 

load factor is equal to zero. The derivative of Eq. (21) is obtained in Eq. (22). 

 (22)  
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In addition, a sufficient condition for minimization Eq. (21) is that its second derivative is 

positive for the load factor. Eq. (23) shows that the second derivative is always positive. 

Hence, the load factor (22) minimizes the function (21). 

 

  (23) 

Finally, by inserting the factors of An and Bn into Eq. (22), the load factor of Eq. (24) can 

be found. 
 

 

(24)  

 

It is worth emphasizing that the new proposed formula depends only on the DR 

parameters. The dynamic relaxation steps to trace the static path are as follows: 

Step 1- Assume the first values of velocity and displacement are zero. 

Step 2- The internal force vector and the stiffness matrix are established. This matrix is only 

for estimating the artificial mass and there is no need for matrix calculations in the 

solution process. 

Step 3- Form the artificial damping and mass matrices. 

Step 4- Obtain the load factor from equations (12) to (17) or (24), based on the desired 

technique. 

Step 5-Calculate the force vector of  Eq. (11). 

Step 6- if  , go to Step 8. Otherwise, update velocities from Eq. (3). 

Step 7- Update the nodal displacements by Eq. (4). Go to Step 2. 

Step 8- Print the load factor and the displacements of the current increment. 

Step 9- If the target displacements or the target loads are achieved, the analysis procedure 

finishes. Otherwise, assume  , and return to Step 2. 

 

 

4. NUMERICAL EXAMPLES 

 
Using a Fortran code, the required computer program is written for applying all the seven 

procedures of the previous sections. By utilizing this program, various structures with 

nonlinear geometric behavior are analyzed in this study. The load-displacement curve of 

many of these examples has been obtained by previous researchers and they are used to 

check the accuracy of the proposed method. For each sample, the structural static path is 

plotted. The mass matrix is obtained from the Underwood method. The time step is assumed 

equal to one. Moreover, the Zhang process is utilized to estimate the damping factor. To 
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compare the performances of all techniques, the analysis duration time and the number of 

iterations of each structure are listed in the tables. The following three criteria are used to 

compare the solutions: 

 (25)  

 

The symbol S1 represents the number of effective iterations to reach a convergence point. 

The smaller S1 shows that the convergence points are obtained with fewer iterations. In 

other words, a smaller value of S1 indicates the superiority of that method. Furthermore, 

factor S2 indicates the number of repetitions per second of the analysis time. Contrary to the 

previous criterion, a higher value of S2 indicates the superiority of the method. In other 

words, the more the value of S2, the higher the number of repetitions in less time. The S3 

criterion is the time required to reach a converged point. Here, a lower value for S3 indicates 

a shorter analysis time per convergence point. The small number of convergence points 

reduces the analysis time. On the other hand, more convergence points are needed to find a 

more accurate structural static path. As a result, the analysis time increases. Table 1 shows 

the processes and symbols of the solutions used in this paper. It is found that some methods 

take a shorter time to reach the answer, but the number of convergence points is fewer. As a 

result, these approaches are not accurate. For this reason, both the number of convergence 

points and the analysis time should be considered. In other words, the shorter analysis time 

does not necessarily mean that the procedure is good. 

 
Table 1: The used DR strategies and their indications 

Method Symbol Method base Equation 

Previous 

MRF Minimization of Residual Force (12) 

MRE Minimization of Residual Energy (13) 

MDI Minimization of Displacement Increment (14) 

MKE Minimization of Kinetic Energy (15) 

MEW Minimization of External forces Work increment in repetitions (16) 

ZWI Zero the external forces Work Increment in repetitions (17) 

Proposed MRaKE Minimization of Residual Energy and Kinetic Energy (24) 

 

4.1. Two members’ truss 

To verify suggested formulations and the authors’ computer code, the two-member truss 

in Figure 2 is analyzed. Greco et al. investigated this simple supported truss. The module of 

elasticity and cross-section of each member are 71.7 GPa and 60 mm2, respectively [27]. 

This truss has a degree of freedom. Because its geometry and loading are symmetrical. This 

degree is the vertical displacement of the middle node. 
 

Total Number of Iterations Total Iterations IterationTimes
1 2 3

Number of Converged Points IterationTimes Number of Converged Points
S S S, ,= = =
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Figure 2: Two-member truss 

 

It should be noted that the closed-form solution of this truss has been obtained by 

researchers [28]. Equations (26) and (27) show the static equilibrium of this structure. 

Young’s module and the cross-section of the members are shown by E and A, 

correspondingly. Subscripts 1 and 2 refer to the member number. 
 

  (26) 

 

 (27) 

 

By solving two Eqs (26) and (27), Felippa estimated the tangential stiffness matrix K and 

the middle node displacement Dy [29]. These values are represented by Eqs (28) and (29), 

respectively. 
 

  (28) 

 

 (29) 

 

At the load limit point, the stiffness matrix determinant is zero. If  Eq. (28) is equal to 

zero, the displacement is obtained at this point. Equation (30) indicates this value. 

 

  (30) 

 

By replacing the value of H in Eq. (30), two numbers are calculated from the 

displacement expression. Then, if these values substitute into Eq. (29), the limit load is 

estimated. By doing this, the displacement values of 0.4226 m and 1.5774 m are obtained. In 

addition, the limit loads are about ±148,102 kN. Next; this structure is analyzed in seven 

ways, and the responses are displayed in Table 1. Figure 3 shows the load-displacement 

curve. It is demonstrated that the result of the authors' computer program is the same as the 
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reference [27]. In other words, the authors' answer is the same as the previous researchers' 

solution. This shows that the proposed method has good accuracy. 

According to the obtained responses, the MEW and ZWI techniques are not able to 

analyze the truss. Other methods have more or less the same force-displacement diagram. 

However, the number of convergence points, the number of iterations, and their analysis 

time are different. Furthermore, the MKE and MDI methods have the same convergence 

points and the number of iterations. In fact, these strategies have behaved similarly in 

analyzing this truss. According to Figure 3, the structure enters the post-buckling region 

after the force value reaches 147,192 kN. In other words, this load is a snap-through point. 

The corresponding displacement of this force is 386.1 mm. After this point, the structure is 

unstable. Another limit point of the load occurred at the load of -147.428 kN and the 

deflection of 1609 mm. The number of convergences increments between snap-through 

points in MRF, MRE, MDI, MKE, and MRaKE procedures are 74, 70, 74, 74, and 72, 

correspondingly. There are two zero-load points in this truss. The top deflection 

corresponding to these points is equal to 1 and 2 meters. The top node is in the horizontal 

plane at the first state. The deflection of 2 m indicates that the structure is symmetric with its 

original shape and relative to the horizontal plane. 

 

 
Figure 3: load-displacement curve for two members’ truss 

 

The analysis duration, the number of iterations, and the scores of the studied algorithms 

are shown in Table 2. The numbers in the two arcs indicate the rank of each process. Table 2 

shows that based on S1, the MRF solution has the highest accuracy. The proposed MRaKE 

method is in the third rank. The S2 score demonstrates the superiority of the new scheme 

over the other techniques. In other words, the proposed method has the fastest convergence 

rate and the highest number of iterations in a short time. The MRF approach also has the 

slowest convergence rate. Therefore, this procedure is in the final rank. Based on the S3 

rating, the suggested formula ranks fourth. MEW and ZWI could not reach the responses. 
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Table 2: The analysis results for two members’ truss 

Technique 

Number of 

convergence 

points 

Number of 

iterations 

analysis time 

(Second) 

Ranking based 

on S1 & S1 

Score 

Ranking based 

on S2 & S2 

Score 

Ranking based 

on S3 & S3 

Score 

MRF 795 398 1.436 1.99749 (1) 553.621 (5) 0.00361 (1) 

MRE 4303 368 6.084 11.6929 (4) 707.265 (2) 0.01653 (5) 

MDI 1192 398 1.779 2.99497 (2) 670.039 (3) 0.00447 (2) 

MKE 1192 398 1.95 2.99497 (2) 611.282 (4) 0.0049 (3) 

MEW ---- ---- ---- ---- ---- ---- 

ZWI ---- ---- ---- ---- ---- ---- 

MRaKE 4060 377 5.491 10.7692 (3) 739.392 (1) 0.1456  

 

4.2. The dome truss 

In this part, the analysis of the dome truss in Figure 4 is performed. All the lower-level 

nodes are pinned supports. This truss has 25 nodes, 64 members, and 51 degrees of freedom. 

A concentrated force is applied to the tip node. The elasticity modulus and members' area 

are 205.947 GPa and 100 cm2, respectively [17]. 
 

 
Figure 4: The geometry of the dome truss 

 
Figure 5 shows the horizontal displacement of node A and the tip deflection curves 

against load P. All of the utilized methods can analyze the truss thoroughly. However, there 

are jumps between convergence points in MRF, MEW, and ZWI techniques. This jump was 

significant for the MEW method. As a result, this process is abandoned due to the inability 

to properly trace this structure. The MRF approach jumps are between load factors of 

1.83454 and -1.77236 and for ZWI between 2.35339 and -2.29036. Hence, these two 

procedures will have the last two ranks. Based on Figure 5, this truss has load and 

displacement limit load points. The first snap-through of this structure occurs at the load of 

5537.8 kN. The tip deflection at this point is 7.445 cm. This is the maximum force that the 

truss can sustain in a stable state. After that, the load returns, and its value will decrease. 

This reduction in the force continues until it reaches another limit load point. This occurs at 

the load of -4605.9 kN and the tip deflection of 29.71 cm. Then, the static path is placed on 

the second ascending branch. It should be noted that the displacement limit point of the 
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dome truss occurred at the load of -1381.6 kN. The horizontal displacement of node A at this 

point is 8.655 mm. In addition to this point, this structure has two zero-load configurations. 

At one of these points, the tip deflection is equal to 40 cm. In this case, the horizontal 

displacement A is zero. The deflection of 40 cm means that the tip node is in symmetry with 

the original shape relative to the level plate below the tip (level A). 

 

  
(a) The tip deflection (b) The horizontal displacement of node A 

Figure 5: The load-displacement curve of the dome truss 
 

Table 3 shows the results of analyzing this structure. Based on the indicator, the MRF 

algorithm ranks first. However, due to the jump event, this approach gained the fifth rank. 

The best schemes are MRE and MRaKE techniques for analyzing this truss.  

 
Table 3: The analysis results for the dome truss 

Technique 

Number of 

convergence 

points 

Number of 

iterations 

analysis time 

(Second) 

Ranking based 

on S1 & S1 

Score 

Ranking based 

on S2 & S2 

Score 

Ranking based 

on S3 & S3 

Score 

MRF 13409 78 18.922 171.91 (5) 708.646 (5) 0.24259 (5) 

MRE 34894 163 50.085 214.074 (1) 696.696 (6) 0.30727 (2) 

MDI 55279 249 78.609 222.004 (3) 703.215 (3) 0.3157 (4) 

MKE 55305 249 77.828 222.108 (4) 710.605 (1) 0.31256 (3) 

MEW ---- ---- ---- ---- ---- ---- 

ZWI 63317 258 89.887 245.415 (6) 704.407 (4) 0.3484 (6) 

MRaKE 40644 189 57.61 215.048 (2) 705.503 (2) 0.30481 (1) 

 

4.3. The Schwedler truss 

Here, the structure in Figure 6 is analyzed. This truss has 240 members, 97 nodes, and 219 

degrees of freedom. The Young’s module and cross-section of each member are 21 GPa and 4.5 

cm2, correspondingly [18]. The lowest-level truss nodes are simply supported. 

Figure 7 shows the diagram of load-displacement for tip node 1 and node 2. The result of 

the authors' method is the same as the references [18]. All approaches give more or less the 

same curve. This must be emphasized that the MRF solution has a local jump. This jump 

occurs in the post-buckling part. The jump is from load 78.1266 to -64.8198 N. This jump 

occurs near the snap-back point. Furthermore, the forces jump of MRE, MDI, MKE, MEW, 

ZWI, and MRaKE procedures are 39.5292, 76.5768, 76.5768, 124.7826, 81.5652 and 

39.3336 N, respectively. These results indicate that the proposed technique and MRE 
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solution have the least jumps. Other schemes have jumped two to three times more than the 

authors’ method. In other words, the MRE and MRaKE processes are the most accurate for 

analyzing this truss. According to the obtained results, the MKE and MDI methods have the 

same convergence points and the number of iterations. To explain it more clearly, these two 

approaches analyze this truss similarly. As it is demonstrated in Figure 7, the load limit point 

was obtained at a force of 453.2484 N and a displacement of 107.1 mm. In addition, the 

diagram of node 2 has a displacement limit point. This point occurs when the tip deflection 

reaches 276.8 mm. In this case, the horizontal displacement of node 2 is 4.336 mm. 

Although the MRaKE solution has fewer convergence points than the MDI, MKE, and ZWI 

procedures, its accuracy is good. In fact, the distance between the converged points in MDI, 

MKE, and ZWI solutions is very small. In the suggested method, the number of convergence 

points increases adjacent to the limit points. However, if the structural static path on the 

branch is stable, the number of these points will be less than the three solutions MDI, MKE, 

and ZWI. 
 

 
Figure 6: The Schwedler truss geometry 

 

  
(1) The deflection of node 1 (2) The horizontal displacement of node 2 

Figure 7: The load-displacement curve of the Schwedler truss 
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The analysis results of this study are listed in Table 4. This table shows that the structural 

analysis time of the proposed process is 40% less than that of the MDI and MKE schemes. 

This short time with proper accuracy is one of the features of the authors' technique. The 

large number of convergence points of MDI and MKE schemes increases the analysis 

duration. According to Table 4, the MRE and MRaKE methods are the best ways to analyze 

the dome truss. As mentioned before, this article aims to reduce the duration of structural 

analysis. Table 4 shows that for this relatively large truss, the time to reach the exact answer 

is less compared to other methods. 

 
Table 4: The analysis results for the Schwedler truss 

Technique 

Number of 

convergence 

points 

Number of 

iterations 

analysis time 

(Second) 

Ranking based 

on S1 & S1 

Score 

Ranking based 

on S2 & S2 

Score 

Ranking based 

on S3 & S3 

Score 

MRF 86121 259 159.479 332.514 (5) 540.015 (6) 0.61575 (7) 

MRE 510173 1222 948.045 417.49 (4) 538.132 (2) 0.77581 (2) 

MDI 902750 2187 1724.93 412.78 (3) 523.356 (3) 0.78872 (3) 

MKE 902728 2187 1843.35 412.77 (3) 489.722 (5) 0.84287 (5) 

MEW 462775 1138 924.629 406.656 (1) 500.498 (4) 0.8125 (4) 

ZWI 881936 2198 1621.9 401.245 (6) 543.766 (7) 0.7379 (6) 

MRaKE 631691 1533 1043.67 412.062 (2) 605.258 (1) 0.68081) 

 

4.4. The star truss 

Figure 8 shows a star truss. This structure is analyzed when carrying the symmetrical 

loading [13]. This space truss has 13 nodes and 21 degrees of freedom. Nodes 8 to 13 are 

pinned support. The module of elasticity and cross-section of the members are 303 GPa and 

3.17 mm2, respectively. The load applied to node 1 is twice the force applied to nodes 2, 3, 

4, 5, 6, and 7. The amount of this load is 25 N. 
 

 
Figure 8: The star truss geometry 

 
Figure 9 plots the static path of the truss tip (node 1) and node 2. The vertical axis of 

these diagrams shows the load value at the tip node. There are two load limit points for the 
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vertical displacement of node 1. These loads are 398.3785 and -225.418 N. The related 

displacements are 7.821 and 29.1 mm, correspondingly. The snap-through points for the 

deflection of node 2 occur at 376.308 and -206.205 N. The vertical displacements of node 2 

are 0.8552 and -1.689 mm at these points, respectively. It should be noted that the MRF, 

MKE, MEW, and ZWI methods have significant jumps in the static path diagram. Because 

of this, these procedures are not able to trace the truss static path. Other processes have the 

appropriate answers. These ways trace all the limit points. However, the number of 

convergence points varies. Actually, the MDI and MRaKE methods trace the structural static 

path with more increments. For example, the numbers of convergence points for finding the 

limit points in the MRE, MDI, and MRaKE techniques are 180, 363, and 204, respectively. 

 

  
(1) The deflection of node 1 (2) The deflection of node 2 

 

Figure 9: The load-displacement curve of the star truss 

 

The results are listed in Table 5. Based on the number of convergent points on the 

structural static path, the analysis time, and the number of iterations, the MRaKE process 

falls between the MRE and MDI procedures. Criteria S2 and S3 indicate the authors' 

formulation suitability. In other words, in terms of truss analysis time, the MRaKE method is 

faster than the other schemes. Table 5 shows that the analysis of this structure with MRE and 

MRaKE algorithms leads to better results.  

 
Table 5: The analysis results for the star truss 

Technique 

Number of 

convergence 

points 

Number of 

iterations 

analysis time 

(Second) 

Ranking based 

on S1 & S1 

Score 

Ranking based 

on S2 & S2 

Score 

Ranking based 

on S3 & S3 

Score 

MRF ---- ---- ---- ---- ---- ---- 

MRE 170136 1063 244.156 160.053 (1) 696.833 (2) 0.22969 (2) 

MDI 246059 1490 373.137 165.14 (2) 659.433 (3) 0.25043 (3) 

MKE ---- ---- ---- ---- ---- ---- 

MEW ---- ---- ---- ---- ---- ---- 

ZWI ---- ---- ---- ---- ---- ---- 

MRaKE 206373 1240 261.144 166.43 (3) 790.265 (1) 0.2106  

 

4.5 The cylindrical roof 

In another part of this research, the ability of the authors' method to solve shell structures is 

examined. To reach a proper conclusion, three different shells are analyzed. First, the 
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cylindrical roof of Figure 10 is analyzed. The two edges in the X direction are free, and the 

other two edges are simply supported. This structure is symmetric. For this reason, a quarter 

of the shell is analyzed. This roof is modeled by 100 shell elements. The shell thickness is 

6.35 mm. Moreover, the Poisson’s ratio and the modulus of elasticity are 0.3 and 3.10275 

GPa, correspondingly [30]. All nodes located in the directions of AB and AC have the same 

uniform load [18]. 

 

 
Figure 10: The cylindrical roof 

 

 Figure 11 shows the load-displacement diagrams of nodes A and B. The displacement of 

the limit point in the node B diagram increases the number of iterations required to trace the 

static path. This issue leads to an increase in the analysis time. This shell has 5 snap points.  

The first snap-through point occurred at the load of 41.9205 N. The deflection of points A 

and B and the horizontal displacement of B at this load were 7.825, 4.991, and 0.0528 mm, 

respectively. After this action, the structure enters the post-buckling part. The other snap-

through occurred at a load of -27.395 N. The mentioned displacements are 20.333, 24.087, 

and 0.00507 mm, respectively. The three displacement limit points in the curve of node B 

are estimated to be 28.3682, -24.3011, and -26.5051 N, correspondingly. Table 6 shows the 

results of the analysis of this roof. The MRF method achieves very few convergence points. 

In other words, this approach has the least accuracy and ranks the last one. Nevertheless, this 

scheme traces the structural static path completely. Based on Table 6, the ZWI procedure 

and the proposed MRaKE technique are the best schemes for analyzing the cylindrical roof. 

 

  
(1) The deflection of nodes A & B (2) The horizontal displacement of node B 

 

Figure 11: The load-displacement curve of the star truss 
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Table 6: The analysis results for the cylindrical roof 

Technique 

Number of 

convergence 

points 

Number of 

iterations 

analysis time 

(Second) 

Ranking based 

on S1 & S1 

Score 

Ranking based 

on S2 & S2 

Score 

Ranking based 

on S3 & S3 

Score 

MRF 101126 77 637.963 1313.32 (7) 158.514 (7) 8.28523 (7) 

MRE 1183477 322 7334.57 3675.39 (4) 161.356 (6) 22.7782 (6) 

MDI 1728985 458 9968.5 3775.08 (6) 173.445 (3) 21.7653 (5) 

MKE 1683197 450 9498.47 3740.44 (5) 177.207 (1) 21.1077 (4) 

MEW 1087139 321 6418.63 3386.73 (2) 169.372 (5) 19.9957 (2) 

ZWI 1458540 453 8591.51 3219.74 (1) 169.765 (4) 18.9658 (1) 

MRaKE 1316360 371 7459.2 3548.14 (3) 176.475 (2) 20.1057  

 

4.6. The two-bay cylindrical shell 

Figure 12 demonstrates the structural static path for the shell. Figure 12 demonstrates the 

static path for this structure. Due to symmetry, a quarter of this shell is modeled with 300 

elements. The elasticity module, thickness, and Poisson’s ratio are 20 GPa, 3 cm, and 0.3, 

correspondingly [16, 18]. 
 

 
Figure 12: The two-bay cylindrical shell 

 
Figure 13 shows the load-displacement curve of nodes A and B. According to Figure 13, 

the snap-back point starts at 57.6984 kN. At this load, the horizontal displacement of node 

B, and the deflections of A and B are 3.9725, 61.95, and 34.081 mm, respectively. Then, the 

snap-through point is formed at the force of 70.4889 kN. The aforementioned displacements 

for this point are 2.765, 116.484, and 50.548 mm, correspondingly. According to Figure 13, 

the structural static path has another snap-through point. The magnitude of the load and the 

deflection of nodes A and B are 50.6229 kN, 220.368 mm, and 86.466 mm, respectively. 

The figure shows that after the second limit point, the answers of the methods for estimating 

the horizontal displacements of node B are separated from each other. Furthermore, Both 

methods MDI and MKE trace the same curve. Moreover, both MEW and MRE strategies 

behave similarly. The closest load-displacement diagram to the reference [18] is the MRaKE 

scheme. 
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(1) The vertical deflection (2) The horizontal displacement of node B 

 

Figure 13: The equilibrium path of the two-bay cylindrical shell 

 

Table 7 shows all outputs for this structure. According to the answers, the number of 

convergence points of the MRF process is much less than the other algorithms. According to 

the number of convergence points, the time to reach the answer of the proposed method was 

less compared to other methods. This is the goal of the writers in this article. The significant 

jumps of this procedure are shown in Figure 13. Therefore, this technique cannot trace this 

shell equilibrium path. Based on reference [18], the authors' method obtains more 

appropriate answers, and it has the first rank. The first and final steps of structural shape are 

shown in Figure 14. 

 
Table 7: The analysis results for the two-bay cylindrical shell 

Technique 

Number of 

convergence 

points 

Number of 

iterations 

analysis time 

(Second) 

Ranking based 

on S1 & S1 

Score 

Ranking based 

on S2 & S2 

Score 

Ranking based 

on S3 & S3 

Score 

MRF ---- ---- ---- ---- ---- ---- 

MRE 786277 133 6718.37 5911.86 (6) 117.034 (4) 50.5141 (4) 

MDI 1064745 183 9499.71 5818.28 (4) 112.082 (5) 51.911 (6) 

MKE 1062006 181 8742.38 5867.44 (5) 121.478 (2) 48.3004 (3) 

MEW 719557 133 6808.75 5410.2 (3) 105.681 (6) 51.1936 (5) 

ZWI 973924 182 8053.97 5351.23 (2) 120.925 (3) 44.2526 (2) 

MRaKE 897471 152 7413.08 5904.41 (1) 121.066 (1) 48.7703 (1) 

 

 
Figure 14: The first and final shape of the two-bay cylindrical shell 
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4.7. The shallow spherical cap 

Figure 15 shows the geometry of this shell. Due to the symmetry in geometry and 

loading, a quarter of the shell can be modeled. The analysis is performed by utilizing 200 

shell elements. All four corner nodes are located on the pinned support. Thickness, the 

modulus of elasticity, and Poisson's ratio are 99.45 mm, 68.944 GPa, and 0.3 mm, 

correspondingly. The force is applied at the crest cap [18]. 

 

 
Figure 15: The shallow spherical cap geometry 

 
In Figure 16, the static paths for the tip nodes, A and B, are plotted. For this shell, the 

first limit point occurs at 82,593 kN. Then, the displacement increases and the load 

decreases. This continues until the next limit point is reached. The related force for this point 

is equal to 31.2597 kN. Based on Figure 16, this structure has a displacement limit point. 

This is associated with the load 39.3372 kN. It should be noted that the snap-back region is 

after the second limit point. Figure 17 shows the initial and deformed shape of this spherical 

cap. 

 

  
(1) The vertical deflection (2) The horizontal displacements of nodes A and B 

 

Figure 16: The load-displacement curves of the shallow spherical cap 
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Figure 17: The first and final shape of the shallow spherical cap 

 
The scores and rankings for the schemes are tabulated in Table 8. According to this, ZWI 

cannot analyze this shell. Therefore, no result is available for this technique. Furthermore, 

the number of converged points for the MRF solution is very small. Subsequently, the 

accuracy of this process is not appropriate. Thus, this scheme does not have any rankings. 

Both MDI and MKE methods have the same number of iterations and convergent points. In 

this example, the MEW algorithm has the highest accuracy. Based on all three criteria, the 

authors’ scheme is third. Table 8 shows that the MRE process is the efficient strategy after 

MEW for solving this shell. 

 
Table 8: The analysis results for the shallow spherical cap 

Technique 

Number of 

convergence 

points 

Number of 

iterations 

analysis time 

(Second) 

Ranking based 

on S1 & S1 

Score 

Ranking based 

on S2 & S2 

Score 

Ranking based 

on S3 & S3 

Score 

MRF 56426 25 352.327 ---- ---- ---- 

MRE 395827 200 2588.88 1979.14 (2) 152.895 (4) 12.9444 (2) 

MDI 257759 97 1703.77 2657.31 (4) 151.287 (5) 17.5647 (5) 

MKE 257759 97 1543.9 2657.31 (4) 166.953 (2) 15.9165 (4) 

MEW 456732 272 2721.77 1679.16 (1) 167.807 (1) 10.0065 (1) 

ZWI ---- ---- ---- ---- ---- ---- 

MRaKE 277583 120 1678 2313.19 (3) 165.425 (3) 13.9833 

 

 

5. THE RANKS OF METHODS 
 

The rank of each algorithm is estimated based on the number of convergence increments, the 

number of iterations, and the analysis time. To perform the comparative studies, the score of 

each process is obtained from Eq. (31). Here, the Qij symbol indicates the j-th ranks of 

method i-th. In other words, this factor indicates that process i has obtained j ranks several 

times. For example, the MRaKE procedure is four times the first technique, based on the S2 

and S3 criteria. Therefore, Qi1 is equal to four for this scheme. Furthermore, the MRE 

process ranks third three times, based on the S2. Hence, Qi2 for this strategy is equal to three. 

The number of structures that the technique i could not analyze is denoted by Qi0. For 

example, in one problem the MKE method is not able to reach the answer, for this reason, 

Qi0 is equal to one. 
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 (31)  

 

It should be added that if a process is not able to reach the answer, Eq. (31) is not used for 

it. In addition, the number 49 is obtained when the method ranks first in all seven samples. 

As a result, the Sij score for it will be 100. The final scores and ranks of all procedures are 

listed in Table 9 to Table 11. Based on these answers, the algorithms are ranked in Table 12. 

This table shows that the authors' scheme ranks first in all three criteria. The robustness 

feature of the proposed technique is the least time required to perform the analyses. This is 

shown by the difference between the first and second ranks in the S2 and S3 criteria. Table 

12 shows that the MRF process is the worst way to trace the static path of structures. 

 
Table 9: The rank of the techniques based on S1 

Method 
Qij 

Si 
j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 

MRF 3 1 0 0 0 2 0 1 28.571 

MRE 0 2 1 0 3 0 1 0 69.388 

MDI 0 0 2 2 2 0 1 0 65.306 

MKE 1 0 1 1 2 2 0 0 51.02 

MEW 3 2 1 1 0 0 0 0 51.02 

ZWI 3 1 1 0 0 0 2 0 34.694 

MRaKE 0 1 2 4 0 0 0 0 79.592 

 

Table 10: The rank of the techniques based on criterion S2 

Method 
Qij 

Si 
j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 

MRF 3 0 0 0 0 2 1 1 18.367 

MRE 0 0 3 0 2 0 2 0 61.224 

MDI 0 0 0 5 0 2 0 0 63.265 

MKE 1 2 2 0 1 1 0 0 67.347 

MEW 3 1 0 0 1 1 1 0 32.653 

ZWI 3 0 0 1 2 0 0 1 28.571 

MRaKE 0 4 2 1 0 0 0 0 91.837 

 

Table 11: The rank of the techniques based on criterion S3 

Method 
Qij 

Si 
j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 

MRF 3 1 0 0 0 1 0 2 24.49 

MRE 0 0 4 0 1 1 1 0 67.347 

MDI 0 0 1 2 1 2 1 0 57.143 

MKE 1 0 0 3 2 1 0 0 53.061 

MEW 3 1 1 0 1 1 0 0 40.816 

ZWI 3 1 1 0 0 0 2 0 34.694 

MRaKE 0 4 0 2 1 0 0 0 85.714 

 

 

 

 

7

8 49
ij ij

j 1
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=
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Table 12: Final ranking of the methods 

Criteria 
Grade 

1 2 3 4 5 6 7 

S1 MRaKE MRE MDI MKE & MEW ZWI MRF ---- 

S2 MRaKE MKE MDI MRE MEW ZWI MRF 

S3 MRaKE MRE MDI MKE MEW ZWI MRF 

 

 

6. CONCLUSIONS 
 

According to the findings, one of the most prominent features of the authors' scheme is the 

high convergence rate with appropriate accuracy. In other words, the new process greatly 

reduces the analysis time compared to other methods; while its accuracy is not significantly 

lessened from the other ways. Applying the load factor in the proposed method is free from 

analyst choice, and it is unconditional. Essentially, the new procedure only utilizes dynamic 

relaxation parameters. It should be remembered that user intervention is required in arc-

length algorithms. Moreover, the number of iterations and convergence points and the 

analysis time depend on the length of the arc. Besides, the low number of convergence 

increments reduces the analysis time. In other words, the proposed method was able to 

obtain each converged point in less time. Also, the authors' approach required less time for 

the calculations of one iteration. 
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